SAT-Based Quantified Symmetric Minimization of the Reachable States of Distributed Protocols: An Update

Yun-Rong Lauren Luo ¹ Aman Goel ² Karem Sakallah ¹

¹University of Michigan, Ann Arbor, MI, USA

²Amazon Web Services, Seattle, USA

2024 International Symposium On Leveraging Applications of Formal Methods, Verification and Validation

type node

type node
individual start_node: node


```
type node
individual start_node: node
```

```
relation message(Src: node, Dst: node)
relation has_lock(N: node)
after init {
   message(Src, Dst) := false;
   has_lock(X) := X = start_node;
}
```



```
type node
individual start_node: node
```

```
relation message(Src: node, Dst: node)
relation has_lock(N: node)
after init {
    message(Src, Dst) := false;
    has_lock(X) := X = start_node;
}
action send(src: node, dst: node) = {
```

```
action send(sic: hode; dst: hode) =
    assume has_lock(src);
    message(src, dst) := true;
    has_lock(src) := false;
}
```



```
type node
individual start_node: node
```

```
relation message(Src: node, Dst: node)
relation has_lock(N: node)
after init {
    message(Src, Dst) := false;
    has_lock(X) := X = start_node;
}
action send(src: node, dst: node) = {
    assume has_lock(src);
```

```
message(src, dst) := true;
has_lock(src) := false;
}
```

start_node n_0 message n_1 n_1 n_2

```
type node
individual start_node: node
```

```
relation message(Src: node, Dst: node)
relation has_lock(N: node)
after init {
    message(Src, Dst) := false;
    has_lock(X) := X = start_node;
}
action send(src: node, dst: node) = {
    assume has_lock(src);
```

```
message(src, dst) := true;
has_lock(src) := false;
}
action recv(src: node, dst: node) = {
    assume message(src, dst);
    message(src, dst) := false;
    has_lock(dst) := true;
```



```
type node
individual start node: node
relation message(Src: node, Dst: node)
relation has lock(N: node)
after init {
 message(Src, Dst) := false;
 has_lock(X) := X = start_node;
action send(src: node, dst: node) = {
    assume has_lock(src);
    message(src, dst) := true;
    has lock(src) := false:
3
action recv(src: node, dst: node) = {
    assume message(src, dst);
    message(src, dst) := false;
    has_lock(dst) := true;
```



```
type node
individual start node: node
relation message(Src: node, Dst: node)
relation has lock(N: node)
after init {
 message(Src, Dst) := false;
 has_lock(X) := X = start_node;
action send(src: node, dst: node) = {
    assume has_lock(src);
    message(src, dst) := true;
    has lock(src) := false:
3
action recv(src: node, dst: node) = {
    assume message(src, dst);
    message(src, dst) := false;
    has_lock(dst) := true;
invariant [safety] (has_lock(X) & has_lock(Y)) -> (X = Y)
```


Previous Work [FGS23]: Deriving R_{\min} for Distributed Protocols

Formal Methods in Computer-Aided Design 2023

SAT-Based Quantified Symmetric Minimization of the Reachable States of Distributed Protocols

Katalin Fazekas **(**) *TU Wien* Vienna, Austria katalin.fazekas@tuwien.ac.at Aman Goel 🕞 Amazon Web Services[§] Seattle, USA goelaman@amazon.com Karem A. Sakallah (D) University of Michigan Ann Arbor, USA karem@umich.edu

The output R_{\min} is closed under transition for the protocol \mathcal{P} of an arbitrary (potentially unbounded) domain size.

Previous R_{\min} for simp-dec-lock

```
// Rmin
invariant [inv 0] (forall NO, N1 . ((NO = N1) | ~has lock(N1) | ~message(NO, NO)))
invariant [inv 1] (forall NO, N1, ((NO = N1) | ~message(N1, N1) | ~message(N0, N0)))
invariant [inv 2] (forall NO, N1, N2 . (~message(NO, NO) | ~message(N1, N2)) | (NO = N1) | (NO = N2) | (N1 = N2) )
invariant [inv_3] (forall NO, N1 . ((NO = N1) | ~message(NO, N1) | ~message(NO, NO)))
invariant [inv_4] (forall NO, N1 . ((NO = N1) | ~message(N1, NO) | ~message(N0, NO)))
invariant [inv 5] (forall NO, N1 . (~(start node = N1) | ~(start node = N0) | (NO = N1)))
invariant [inv_6] (forall NO, N1 . ((NO = N1) | ~message(NO, N1) | ~has lock(NO)))
invariant [inv 7] (forall NO, N1, N2 . ((NO = N2) | (N1 = N2) | (NO = N1) | ~message(NO, N2) | ~message(N1, N2)))
invariant [inv 8] (forall NO, N1, N2 . ((NO = N2) | (N1 = N2) | ~has lock(N1) | (NO = N1) | ~message(NO, N2)))
invariant [inv 9] (forall NO, N1, N2 . ((NO = N2) | (N1 = N2) | ~message(N2, N1) | (NO = N1) | ~message(N0, N2)))
invariant [inv 10] (forall NO, N1 . ((NO = N1) | ~has lock(NO) | ~message(N1, NO)))
invariant [inv 11] (forall NO. N1. ((NO = N1) | ~message(NO. N1) | ~message(N1. NO)))
invariant [inv_12] (forall NO . (~has_lock(NO) | ~message(NO, NO)))
invariant [inv 13] (forall NO, N1, N2 . ((NO = N2) | (N1 = N2) | (NO = N1) | ~message(NO, N1) | ~message(NO, N2)))
invariant [inv 14] (forall NO, N1, N2, N3, ( ~message(N0, N3) | ~message(N1, N2)
                                              | (NO = N2) | (N1 = N2) | (NO = N1) | (NO = N3) | (N1 = N3) | (N2 = N3) ) \rangle
invariant [inv 15] (forall NO, N1 . ((NO = N1) | ~has lock(NO) | ~has lock(N1)))
invariant [inv 16] (exists NO . (start node = NO))
invariant [inv 17] (exists NO. N1. N2 . (has lock(NO) | message(N1. N2)))
```

• The inductive invariant R_{\min} for simp-dec-lock is a conjunction of 18 invariants.

Updated R_{\min} for simp-dec-lock

- R_{\min} reduces from 18 invariants to 4 invariants.
- The derivation of the former R_{\min} only considers symmetric minimization whereas the updated R_{\min} considers both symmetric and logical minimization.

Proving Safety Property P with R_{\min}

- The derivation of R_{\min} is independent of the safety properties hence R_{\min} can be used to prove any safety property P.
- Given a safety property P, P holds for the protocol if $R_{\min} \to P \equiv \top$, i.e., $R_{\min} \land \neg P \equiv \bot.$
- An example safety property:

 $\begin{array}{c} \text{protocol} \ \mathcal{P} \\ \text{finite domain} \ \mathcal{D} \end{array}$

protocol \mathcal{P} , finite domain \mathcal{D}

protocol $\mathcal P$, finite domain $\mathcal D$

↓ 1. Forward reachability

1. Use BDD-based symbolic image computation to derive reachable states $R(\mathcal{P}^{\mathcal{D}})$.

1. Use BDD-based symbolic image computation to derive reachable states $R(\mathcal{P}^{\mathcal{D}})$.

2. Use a SAT-based method to enumerate symmetric prime orbits $\texttt{Orbits}(\mathcal{P}^{\mathcal{D}})$ for the unreachable states $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

1. Use BDD-based symbolic image computation to derive reachable states $\mathbb{R}(\mathcal{P}^{\mathcal{D}})$.

2. Use a SAT-based method to enumerate symmetric prime orbits $\texttt{Orbits}(\mathcal{P}^{\mathcal{D}})$ for the unreachable states $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

3. Express each prime orbit $p \in \text{Orbits}(\mathcal{P}^{\mathcal{D}})$ with a logically equivalent first-order sentence fo(p).

1. Use BDD-based symbolic image computation to derive reachable states $\mathbb{R}(\mathcal{P}^{\mathcal{D}})$.

2. Use a SAT-based method to enumerate symmetric prime orbits $\texttt{Orbits}(\mathcal{P}^{\mathcal{D}})$ for the unreachable states $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

3. Express each prime orbit $p \in \text{Orbits}(\mathcal{P}^{\mathcal{D}})$ with a logically equivalent first-order sentence fo(p).

4. Use a SAT-based branch-and-bound search for a minimum-cost subset $\mathtt{MinOrbits}(\mathcal{P}^{\mathcal{D}})$ of $\mathtt{Orbits}(\mathcal{P}^{\mathcal{D}})$ that forms a set cover for $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

1. Use BDD-based symbolic image computation to derive reachable states $\mathbb{R}(\mathcal{P}^{\mathcal{D}})$.

2. Use a SAT-based method to enumerate symmetric prime orbits $\texttt{Orbits}(\mathcal{P}^{\mathcal{D}})$ for the unreachable states $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

3. Express each prime orbit $p \in \text{Orbits}(\mathcal{P}^{\mathcal{D}})$ with a logically equivalent first-order sentence fo(p).

4. Use a SAT-based branch-and-bound search for a minimum-cost subset $\mathtt{MinOrbits}(\mathcal{P}^{\mathcal{D}})$ of $\mathtt{Orbits}(\mathcal{P}^{\mathcal{D}})$ that forms a set cover for $\neg \mathtt{R}(\mathcal{P}^{\mathcal{D}})$.

5. Construct
$$R_{\min}^{\mathcal{D}} \coloneqq \bigwedge_{p \in \texttt{MinOrbits}(\mathcal{P}^{\mathcal{D}})} \neg \texttt{fo}(p)$$

Issue I: BDD-based symbolic image computation is unscalable.

Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quotient Depth-First Search (Sym_DFS).

Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quotient Depth-First Search (Sym_DFS).

Issue II: The symmetric prime orbits are not necessarily logically prime.

Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quotient Depth-First Search (Sym_DFS).

Issue II: The symmetric prime orbits are not necessarily logically prime.

Update II: Merge symmetric prime orbits into a logically equivalent prime *super orbit*.

Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quotient Depth-First Search (Sym_DFS).

Issue II: The symmetric prime orbits are not necessarily logically prime.

Update II: Merge symmetric prime orbits into a logically equivalent prime *super orbit*.

Issue III: There exists multiple minimum solutions at small domains $\ensuremath{\mathcal{D}}.$

Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quotient Depth-First Search (Sym_DFS).

Issue II: The symmetric prime orbits are not necessarily logically prime.

Update II: Merge symmetric prime orbits into a logically equivalent prime *super orbit*.

Issue III: There exists multiple minimum solutions at small domains $\ensuremath{\mathcal{D}}.$

Update III: Update the syntactic convergence condition to the smallest \mathcal{D}^* such that $R_{\min}^{\mathcal{D}^*}$ is unique.

• Issues of BDD-based symbolic image computation:

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

• Sym_DFS:

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

• Sym_DFS:

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

- Sym_DFS:
 - Upon discovering a new state s,

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

- Sym_DFS:
 - Upon discovering a new state *s*, Sym_DFS enumerates the symmetric orbit of *s* and assigns *s* to be a representative state.

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

- Sym_DFS:
 - Upon discovering a new state *s*, Sym_DFS enumerates the symmetric orbit of *s* and assigns *s* to be a representative state.
 - Sym_DFS only explores successors for a representative state *s*.

- Issues of BDD-based symbolic image computation:
 - Struggles when the BDD that represents the reachable states is large.
 - Does not leverage the structural symmetry of protocols.

- Sym_DFS:
 - Upon discovering a new state *s*, Sym_DFS enumerates the symmetric orbit of *s* and assigns *s* to be a representative state.
 - Sym_DFS only explores successors for a representative state *s*.
 - Sym_DFS does not explore successors for a non-representative state s'.

		DFS		BDD	Time (s)		Peak Mem (MB)	
Protocol	#vars	#states	repr%	#cubes	DFS	BDD	DFS	BDD
sharded_kv	84	24389	0.46%	13824	146	33	15.3	19.3
sharded_kv_no_lost_keys	84	21952	0.41%	13824	117	33	14.0	18.9
toy_consensus	40	693	2.16%	?	14	то	1.7	-
toy_consensus_epr	40	693	2.16%	?	14	то	1.7	-
naive_consensus	36	873	2.75%	432	18	2	1.7	4.8
simple-election	44	2552	1.92%	2425	32	2,058	2.4	4.8
toy_consensus_forall	49	235875	0.04%	?	4,872	то	198.2	-
consensus_epr	72	?	?	1318	то	1,202	-	5.9

		DFS		BDD	Time (s)		Peak Mem (MB)	
Protocol	#vars	#states	repr%	#cubes	DFS	BDD	DFS	BDD
sharded_kv	84	24389	0.46%	13824	146	33	15.3	19.3
sharded_kv_no_lost_keys	84	21952	0.41%	13824	117	33	14.0	18.9
toy_consensus	40	693	2.16%	?	14	то	1.7	-
toy_consensus_epr	40	693	2.16%	?	14	то	1.7	-
naive_consensus	36	873	2.75%	432	18	2	1.7	4.8
simple-election	44	2552	1.92%	2425	32	2,058	2.4	4.8
toy_consensus_forall	49	235875	0.04%	?	4,872	то	198.2	-
consensus_epr	72	?	?	1318	то	1,202	-	5.9

		DFS		BDD	Time (s)		Peak Mem (MB)	
Protocol	#vars	#states	repr%	#cubes	DFS	BDD	DFS	BDD
sharded_kv	84	24389	0.46%	13824	146	33	15.3	19.3
sharded_kv_no_lost_keys	84	21952	0.41%	13824	117	33	14.0	18.9
toy_consensus	40	693	2.16%	?	14	то	1.7	-
toy_consensus_epr	40	693	2.16%	?	14	то	1.7	-
naive_consensus	36	873	2.75%	432	18	2	1.7	4.8
simple-election	44	2552	1.92%	2425	32	2,058	2.4	4.8
toy_consensus_forall	49	235875	0.04%	?	4,872	то	198.2	-
consensus_epr	72	?	?	1318	то	1,202	-	5.9

		DFS		BDD	Time (s)		Peak Mem (MB)	
Protocol	#vars	#states	repr%	#cubes	DFS	BDD	DFS	BDD
sharded_kv	84	24389	0.46%	13824	146	33	15.3	19.3
sharded_kv_no_lost_keys	84	21952	0.41%	13824	117	33	14.0	18.9
toy_consensus	40	693	2.16%	?	14	то	1.7	-
toy_consensus_epr	40	693	2.16%	?	14	то	1.7	-
naive_consensus	36	873	2.75%	432	18	2	1.7	4.8
simple-election	44	2552	1.92%	2425	32	2,058	2.4	4.8
toy_consensus_forall	49	235875	0.04%	?	4,872	то	198.2	-
consensus_epr	72	?	?	1318	то	1,202	-	5.9

5 orbits for simp-dec-lock at |node| = 3

orbit representative cube : orbit size

 $has_lock(n_0) \land message(n_0, n_0): 3$

 $has_lock(n_0) \land message(n_0, n_1) : 6$

 $has_lock(n_0) \land message(n_1, n_0): 6$

 $has_lock(n_0) \land message(n_1, n_1) : 6$

 $has_lock(n_0) \land message(n_1, n_2): 6$

5 orbits for simp-dec-lock at |node| = 3Logically equivalent first-order sentence for each orbit orbit representative cube : orbit size $has_lock(n_0) \land message(n_0, n_0) : 3$ $\exists N_0. has_lock(N_0) \land message(N_0, N_0)$ has $lock(n_0) \wedge message(n_0, n_1) : 6$ $\exists N_0, N_1$. has lock $(N_0) \land \text{message}(N_0, N_1) \land (N_0 \neq N_1)$ $has_lock(n_0) \land message(n_1, n_0) : 6$ $\exists N_0, N_1$. has lock $(N_0) \land \text{message}(N_1, N_0) \land (N_0 \neq N_1)$ has $lock(n_0) \wedge message(n_1, n_1) : 6$ $\exists N_0, N_1$. has lock $(N_0) \land \text{message}(N_1, N_1) \land (N_0 \neq N_1)$ $\exists N_0, N_1, N_2.$ has_lock $(N_0) \land message(N_1, N_2) \land$ $has_lock(n_0) \land message(n_1, n_2): 6$ $(N_0 \neq N_1) \land (N_0 \neq N_2) \land (N_1 \neq N_2)$

Super orbit

5 orbits for simp-dec-lock at $ \texttt{node} = 3$	
orbit representative cube : orbit size	Logically equivalent first-order sentence for each orbit
$\texttt{has_lock}(n_0) \land \texttt{message}(n_0,n_0):3$	$\rightarrow \exists N_0. has_lock(N_0) \land message(N_0, N_0)$
$\texttt{has_lock}(n_0) \land \texttt{message}(n_0,n_1):6$	$\Rightarrow \exists N_0, N_1. \texttt{has_lock}(N_0) \land \texttt{message}(N_0, N_1) \land (N_0 \neq N_1)$
$\texttt{has_lock}(n_0) \land \texttt{message}(n_1, n_0) : 6$	$\Rightarrow \exists N_0, N_1. \texttt{has_lock}(N_0) \land \texttt{message}(N_1, N_0) \land (N_0 \neq N_1)$
$\texttt{has_lock}(n_0) \land \texttt{message}(n_1,n_1):6$	$\Rightarrow \exists N_0, N_1. \texttt{has_lock}(N_0) \land \texttt{message}(N_1, N_1) \land (N_0 \neq N_1)$
$\fbox{has_lock}(n_0) \land \texttt{message}(n_1,n_2):6}$	$\exists N_0, N_1, N_2. \texttt{has_lock}(N_0) \land \texttt{message}(N_1, N_2) \land \\ (N_0 \neq N_1) \land (N_0 \neq N_2) \land (N_1 \neq N_2)$

Super orbit

Perform quantification-pattern inference on super orbits:

- Yields a smaller number of quantified invariants in R_{\min} .
 - 10 out of 16 protocols results in a more compact $R_{\rm min}.$
 - E.g., the number of invariants in R_{\min} for simp-dec-lock reduces from 18 to 4.
- Reaches cut-off at a smaller domain \mathcal{D}^* .
 - 8 out of 16 protocols achieves a smaller cut-off domain size.
 - E.g., the cut-off domain size for simp-dec-lock reduces from |node| = 4 to |node| = 3.

Update III: Syntactic Convergence Condition

- Protocol toy_consensus_forall:
 - There are two minimum solutions for $R_{\min}^{\mathcal{D}}$ when the domain size for node is 3 or 4.
 - When the domain size is |node| = 5, |quorum| = 10, |value| = 3, Solution 1 is the only minimum solution.

```
// Solution 0 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N,V0) | ~vote(N,V1) | (V0 = V1)
invariant [inv_14] forall V,N,Q. ~decided(V) | vote(N,V) | member(N,Q) | voting_quorum = Q
// Solution 1 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N0,V0) | ~vote(N0,V1) | (V0 = V1)
invariant [inv_12] forall V,N,Q. ~decided(V) | vote(N,V) | ~member(N,Q) | voting_quorum ~= Q
```

Update III: Syntactic Convergence Condition

- Protocol toy_consensus_forall:
 - There are two minimum solutions for $R^{\mathcal{D}}_{\min}$ when the domain size for node is 3 or 4.
 - When the domain size is |node| = 5, |quorum| = 10, |value| = 3, Solution 1 is the only minimum solution.

```
// Solution 0 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N,V0) | ~vote(N,V1) | (V0 = V1)
invariant [inv_14] forall V,N,Q. ~decided(V) | vote(N,V) | member(N,Q) | voting_quorum = Q
// Solution 1 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N0,V0) | ~vote(N0,V1) | (V0 = V1)
invariant [inv_12] forall V,N,Q. ~decided(V) | vote(N,V) | ~member(N,Q) | voting_quorum ~= Q
```

• Let the syntactic convergence condition be the smallest domain \mathcal{D}^* such that (1) $R_{\min}^{\mathcal{D}^*}$ is unique; (2) $R_{\min}^{\mathcal{D}^*} = R_{\min}^{\mathcal{D}^*+1}$.

Luo, Goel, Sakallah

Overall Results on 19 Protocols

Protocol	cut-off	#inv	#inv [FGS23]	Time (s)
Consensus	value=3	1	1	8.78
TCommit	resource_manager=2	7	8	8.79
Ricart-Agrawala	node=2	4	4	8.86
lock_server	server=1,client=3	3	3	8.40
sharded_kv	node=3, key=2, value=2	5	8	10.09
sharded_kv_no_lost_key	node=3,key=2,value=2	6	9	10.71
simple-decentralized-lock	node=3	4	18	9.00
firewall	node=3	5	5	11.73
lockserv	node=3	10	13	8.95
lockserv_automaton	node=3	10	13	9.09
client_server_ae	node=1,request=1,response=1	3	?	8.80
TwoPhase	resource_manager=1	16	?	50.07
toy_consensus	node=3,quorum=3,value=3	4	4	9.90
toy_consensus_epr	node=3,quorum=3,value=3	5	6	10.20
naive_consensus	node=3,quorum=3,value=3	3	3	10.17
simple-election	acceptor=3,quorum=3,proposer=3	5	7	13.25
toy_consensus_forall	node=5,quorum=10,value=3	4	6	172.03
consensus_epr	node=3,quorum=3,value=2	10	16	755.09
quorum-leader-election-wo-maj	node=5,nset=10	5	?	390.93

• Sym_DFS:

• Quantification-pattern inference:

• Branch-and-bound search for minimum prime orbits cover

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
- Quantification-pattern inference:

• Branch-and-bound search for minimum prime orbits cover

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:

• Branch-and-bound search for minimum prime orbits cover

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:
 - For protocol two_phase_commit, there is no bounded quantification pattern to capture the special literal distribution in prime orbits: #alive + #decide_abort = |node|

• Branch-and-bound search for minimum prime orbits cover

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:
 - For protocol two_phase_commit, there is no bounded quantification pattern to capture the special literal distribution in prime orbits: #alive + #decide_abort = |node|
 - These prime orbits can be viewed as having an infinite cost and excluded from the minimum solution. Future work: how to identify them?
- Branch-and-bound search for minimum prime orbits cover

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:
 - For protocol two_phase_commit, there is no bounded quantification pattern to capture the special literal distribution in prime orbits: #alive + #decide_abort = |node|
 - These prime orbits can be viewed as having an infinite cost and excluded from the minimum solution. Future work: how to identify them?
- Branch-and-bound search for minimum prime orbits cover
 - QSM uses a prime's coverage as the branching heuristic, which is estimated using SAT queries.
- Totally-ordered sorts:

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:
 - For protocol two_phase_commit, there is no bounded quantification pattern to capture the special literal distribution in prime orbits: #alive + #decide_abort = |node|
 - These prime orbits can be viewed as having an infinite cost and excluded from the minimum solution. Future work: how to identify them?
- Branch-and-bound search for minimum prime orbits cover
 - QSM uses a prime's coverage as the branching heuristic, which is estimated using SAT queries.
 - Future work: improve coverage estimation with approximate or exact #SAT queries.
- Totally-ordered sorts:

- Sym_DFS:
 - Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the symmetric group is large.
 - Future work: develop a hashing technique that hashes symmetric states to the same hash key.
- Quantification-pattern inference:
 - For protocol two_phase_commit, there is no bounded quantification pattern to capture the special literal distribution in prime orbits: #alive + #decide_abort = |node|
 - These prime orbits can be viewed as having an infinite cost and excluded from the minimum solution. Future work: how to identify them?
- Branch-and-bound search for minimum prime orbits cover
 - QSM uses a prime's coverage as the branching heuristic, which is estimated using SAT queries.
 - Future work: improve coverage estimation with approximate or exact #SAT queries.
- Totally-ordered sorts:
 - Extend QSM to support protocols with totally-ordered sorts by exploiting *temporal repetitiveness*.

• QSM: Behaviors of unbounded distributed protocols can be inferred from analyzing finite instances until a small *cut-off* domain sizes for protocol.

- QSM: Behaviors of unbounded distributed protocols can be inferred from analyzing finite instances until a small *cut-off* domain sizes for protocol.
- Updates to QSM:

Conclusions

- QSM: Behaviors of unbounded distributed protocols can be inferred from analyzing finite instances until a small *cut-off* domain sizes for protocol.
- Updates to QSM:
 - We propose Sym_DFS, quantification-pattern inference for super orbits, and updated syntactic convergence condition.

- QSM: Behaviors of unbounded distributed protocols can be inferred from analyzing finite instances until a small *cut-off* domain sizes for protocol.
- Updates to QSM:
 - We propose Sym_DFS, quantification-pattern inference for super orbits, and updated syntactic convergence condition.
 - Experiments show that these improvements allow QSM to solve previously unsolved cases, produce more compact quantified inductive invariants, and achieve syntactic convergence at smaller domain sizes.

References I

[FGS23] Katalin Fazekas, Aman Goel, and Karem A. Sakallah. "SAT-Based Quantified Symmetric Minimization of the Reachable States of Distributed Protocols". In: Formal Methods in Computer-Aided Design (FMCAD 2023). Ames, Iowa, Oct. 2023, pp. 152–161. DOI: 10.34727/2023/isbn.978-3-85448-060-0_23.