
SAT-Based Quantified Symmetric Minimization of the
Reachable States of Distributed Protocols: An Update

Yun-Rong Lauren Luo 1 Aman Goel 2 Karem Sakallah 1

1University of Michigan, Ann Arbor, MI, USA

2Amazon Web Services, Seattle, USA

2024 International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation



Distributed Protocol: simple-decentralized-lock
type node

individual start_node: node

relation message(Src: node, Dst: node)
relation has_lock(N: node)
after init {
message(Src, Dst) := false;
has_lock(X) := X = start_node;

}

action send(src: node, dst: node) = {
assume has_lock(src);
message(src, dst) := true;
has_lock(src) := false;

}
action recv(src: node, dst: node) = {

assume message(src, dst);
message(src, dst) := false;
has_lock(dst) := true;

}
invariant [safety] (has_lock(X) & has_lock(Y)) -> (X = Y)

n0 n1

n2

start_node

Safety: no two nodes have
lock at the same time
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Abstract—Most of the recent published work on the automated
verification of distributed protocols has been concerned with
deriving an inductive invariant that implies a safety specification.
In this paper we argue that the inherent structural symme-
try of protocols strongly suggests the existence of a unique
property-independent formula rmin that describes a protocol’s
reachable states as a minimum-cost conjunction of quantified
first-order logic predicates. We show, for finite instances, that
these predicates correspond to symmetry orbits of prime im-
plicates, and show how they are derived using a novel SAT-
based logic minimization algorithm which relies on the connection
between symmetry and quantification as complementary ways
of representing these orbits. We also present empirical data
showing that the minimum-cost orbits derived for increasing
protocol sizes converge syntactically, reaching a fixed point at
a relatively small critical size. Our findings, thus, confirm earlier
observations about the cutoff and saturation phenomenon of
parameterized systems. To our knowledge, our approach is the
first to algorithmically derive quantified first-order logic formulas
for the reachable states of unbounded parameterized systems,
enabling the verification of any safety property.

Index Terms—Distributed protocols, logic minimization, invari-
ant inference, symmetry, quantifier inference.

I. INTRODUCTION

Driven by the availability of modern Satisfiability Modulo
Theories (SMT) solvers [1], [2], the last few years have seen
increasing interest in finding ways to automate the analysis
and verification of distributed protocol specifications. Most of
the recent published work [3]–[9] has been concerned with
deriving an inductive invariant in quantified first-order logic
(FOL) that serves as a proof certificate of a protocol’s safety
property.

In this paper we argue that (an enhanced version of) clas-
sical logic minimization adds a new perspective that furthers
our understanding of protocol behavior. Specifically we show,
for a restricted class of protocol specifications, that it is
possible to algorithmically derive a formula rmin that encodes
the reachable states as an exact minimum-cost conjunction of
quantified FOL invariants. For this purpose, we define the cost
of a quantified invariant in prenex normal form (PNF) to be the
sum of the number of quantifiers in its prefix and the number
of literals in its matrix.

Key to deriving these minimum-cost formulas for the reach-
able states is the inherent structural symmetries of proto-

§Work does not relate to Aman Goel’s position at Amazon

col specifications as well as the recently-established connec-
tion between symmetry and quantification [6]. Applied to
finite protocol instances, our proposed Quantified Symmetric
Minimization (QSM) algorithm preserves these symmetries in
both the prime implicant (PI) generation and set covering
phases of the classical Quine-McCluskey (QM)1 algorithm.
In addition, it replaces the unscalable tabular procedures in
QM with scalable alternatives based on incremental SAT
solving [10], [11]. Empirically, we also show that the finitely-
quantified reachable state formulas generated by QSM at
increasing protocol sizes reach a syntactic fixed point at a
critical cutoff size and yield the minimum formula for the
reachable states of the unbounded protocol. We believe this to
be a direct consequence of the restrictions (elaborated later)
on the class of protocols we consider, but leave a rigorous
formal proof as future work.

The invariants in the rmin formula will be shown to be prime
implicate symmetry orbits of the reachable states and that they
represent the complete set of strengthening assertions needed
to establish the validity of any safety property S . Intuitively,
if rmin ! S is valid, then S holds. However, the simplest
explanation of why S holds might be a minimal subset of
rmin ’s orbits that acts as its strongest strengthening assertion.

Our key contributions include:

• A novel symmetry-aware SAT-based logic minimization
algorithm that utilizes structural symmetry and its con-
nection with quantification to derive an exact minimum-
cost representation of the original structurally-symmetric
formula as a finitely-quantified FOL formula.

• A novel forward-reachability algorithm that derives the
strongest complete property-independent quantified for-
mula rk

min representing the set of reachable states for a
protocol instance of size k .

• A simple property-independent procedure that derives
r1
min , r2

min , . . . for protocol instances with increasing
sizes until reaching convergence at a critical cutoff size
k⇤, where rk⇤

min syntactically converges to rk⇤+1
min . At the

cutoff size, rmin represents the strongest and complete
inductive invariant that summarizes all protocol behaviors
for any size.

1The fact that QSM and QM have two identical initials is purely coinci-
dental.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 23 This article is licensed under a Creative
Commons Attribution 4.0 International License

protocol P
finite domain D

QSM for D

D ← D + 1

RD
min RD

min
?= RD−1

min
Yes

No

Rmin inductive?

No
cut-off D∗ ← D − 1

Rmin

Yes
output

The output Rmin is closed
under transition for the
protocol P of an arbitrary
(potentially unbounded)
domain size.
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Previous Rmin for simp-dec-lock

// Rmin
invariant [inv_0] (forall N0, N1 . ((N0 = N1) | ~has_lock(N1) | ~message(N0, N0)))
invariant [inv_1] (forall N0, N1 . ((N0 = N1) | ~message(N1, N1) | ~message(N0, N0)))
invariant [inv_2] (forall N0, N1, N2 . (~message(N0, N0) | ~message(N1, N2)) | (N0 = N1) | (N0 = N2) | (N1 = N2) )
invariant [inv_3] (forall N0, N1 . ((N0 = N1) | ~message(N0, N1) | ~message(N0, N0)))
invariant [inv_4] (forall N0, N1 . ((N0 = N1) | ~message(N1, N0) | ~message(N0, N0)))
invariant [inv_5] (forall N0, N1 . (~(start_node = N1) | ~(start_node = N0) | (N0 = N1)))
invariant [inv_6] (forall N0, N1 . ((N0 = N1) | ~message(N0, N1) | ~has_lock(N0)))
invariant [inv_7] (forall N0, N1, N2 . ((N0 = N2) | (N1 = N2) | (N0 = N1) | ~message(N0, N2) | ~message(N1, N2)))
invariant [inv_8] (forall N0, N1, N2 . ((N0 = N2) | (N1 = N2) | ~has_lock(N1) | (N0 = N1) | ~message(N0, N2)))
invariant [inv_9] (forall N0, N1, N2 . ((N0 = N2) | (N1 = N2) | ~message(N2, N1) | (N0 = N1) | ~message(N0, N2)))
invariant [inv_10] (forall N0, N1 . ((N0 = N1) | ~has_lock(N0) | ~message(N1, N0)))
invariant [inv_11] (forall N0, N1 . ((N0 = N1) | ~message(N0, N1) | ~message(N1, N0)))
invariant [inv_12] (forall N0 . (~has_lock(N0) | ~message(N0, N0)))
invariant [inv_13] (forall N0, N1, N2 . ((N0 = N2) | (N1 = N2) | (N0 = N1) | ~message(N0, N1) | ~message(N0, N2)))
invariant [inv_14] (forall N0, N1, N2, N3 . ( ~message(N0, N3) | ~message(N1, N2)

| (N0 = N2) | (N1 = N2) | (N0 = N1) | (N0 = N3) | (N1 = N3) | (N2 = N3) ))
invariant [inv_15] (forall N0, N1 . ((N0 = N1) | ~has_lock(N0) | ~has_lock(N1)))
invariant [inv_16] (exists N0 . (start_node = N0))
invariant [inv_17] (exists N0, N1, N2 . (has_lock(N0) | message(N1, N2)))

The inductive invariant Rmin for simp-dec-lock is a conjunction of 18 invariants.
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Updated Rmin for simp-dec-lock

// Rmin
invariant [inv_0] forall N0,N1. ~has_lock(N0) | ~has_lock(N1) | (N0 = N1)
invariant [inv_1] forall N0,N1,N2. ~has_lock(N0) | ~message(N1,N2)
invariant [inv_2] exists N0,N1,N2. message(N1,N2) | has_lock(N0)
invariant [inv_3] forall Src0,Src1,Dst0,Dst1. ~message(Src0,Dst0) | ~message(Src1,Dst1)

| (Src0 = Src1 & Dst0 = Dst1)

Rmin reduces from 18 invariants to 4 invariants.

The derivation of the former Rmin only considers symmetric minimization whereas the
updated Rmin considers both symmetric and logical minimization.
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Proving Safety Property P with Rmin

The derivation of Rmin is independent of the safety properties hence Rmin can be used to
prove any safety property P .

Given a safety property P , P holds for the protocol if Rmin → P ≡ ⊤, i.e.,
Rmin ∧ ¬P ≡ ⊥.

An example safety property:

// safety property P
invariant [safety] (has_lock(X) & has_lock(Y)) -> (X = Y)

// Rmin
invariant [inv_0] forall N0,N1. ~has_lock(N0) | ~has_lock(N1) | (N0 = N1)
invariant [inv_1] forall N0,N1,N2. ~has_lock(N0) | ~message(N1,N2)
invariant [inv_2] exists N0,N1,N2. message(N1,N2) | has_lock(N0)
invariant [inv_3] forall Src0,Src1,Dst0,Dst1. ~message(Src0,Dst0) | ~message(Src1,Dst1)

| (Src0 = Src1 & Dst0 = Dst1)
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Deriving Rmin: Quantified Symmetric Minimization (QSM)

protocol P
finite domain D

QSM for D RD
min RD

min
?= RD−1

min
Yes

Rmin inductive?

D ← D + 1
No No

cut-off D∗ ← D − 1
Rmin

Yes
output
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Deriving RDmin: Quantified Symmetric Minimization (QSM)
protocol P, finite domain D

1. Forward reachability 1. Use BDD-based symbolic image computation to
derive reachable states R(PD).

2. Prime orbits generation
2. Use a SAT-based method to enumerate symmetric
prime orbits Orbits(PD) for the unreachable states
¬R(PD).

3. Quantification-pattern inference 3. Express each prime orbit p ∈ Orbits(PD) with a
logically equivalent first-order sentence fo(p).

4. Minimizing prime orbits cover
4. Use a SAT-based branch-and-bound search
for a minimum-cost subset MinOrbits(PD) of
Orbits(PD) that forms a set cover for ¬R(PD).

finite reachability RD
min 5. Construct RD

min :=
∧

p∈MinOrbits(PD) ¬fo(p)

R(PD)

Orbits(PD)

fo(p) for p ∈ Orbits(PD)

MinOrbits(PD)
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Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Quantified Symmetric Minimization (QSM): Issues and Updates
protocol P, finite domain D

1. Forward reachability
Issue I: BDD-based symbolic image computation is unscalable.

Update I: Replace BDD-based method with Symmetric Quo-
tient Depth-First Search (Sym_DFS).

2. Prime orbits generation

3. Quantification-pattern inference
Issue II: The symmetric prime orbits are not necessarily logi-
cally prime.

Update II: Merge symmetric prime orbits into a logically equiv-
alent prime super orbit.

4. Minimizing prime orbits cover
Issue III: There exists multiple minimum solutions at small
domains D.

Update III: Update the syntactic convergence condition to the
smallest D∗ such that RD∗

min is unique.finite reachability RD
min

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 8 / 16



Update I: Symmetric Quotient DFS for Reachable States (Sym_DFS)
Issues of BDD-based symbolic image computation:

Struggles when the BDD that represents the reachable states is large.
Does not leverage the structural symmetry of protocols.

Sym_DFS:

Upon discovering a new state s,

Sym_DFS
enumerates the symmetric orbit of s and assigns s
to be a representative state.

Sym_DFS only explores successors for a
representative state s.
Sym_DFS does not explore successors for a
non-representative state s′.

s s′ . . .

state orbit 0

s1 s′
1 . . .

state orbit 1

s′

×
s2 s′

2. . .

×

×

×
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Update I: BDD vs. Sym_DFS

DFS BDD Time (s) Peak Mem (MB)

Protocol #vars #states repr% #cubes DFS BDD DFS BDD

sharded_kv 84 24389 0.46% 13824 146 33 15.3 19.3

sharded_kv_no_lost_keys 84 21952 0.41% 13824 117 33 14.0 18.9

toy_consensus 40 693 2.16% ? 14 TO 1.7 -

toy_consensus_epr 40 693 2.16% ? 14 TO 1.7 -

naive_consensus 36 873 2.75% 432 18 2 1.7 4.8

simple-election 44 2552 1.92% 2425 32 2,058 2.4 4.8

toy_consensus_forall 49 235875 0.04% ? 4,872 TO 198.2 -

consensus_epr 72 ? ? 1318 TO 1,202 - 5.9

TO stands for time out after 5000 sec.
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Update II: Quantification-Pattern Inference for Super Orbits

5 orbits for simp-dec-lock at |node| = 3
orbit representative cube : orbit size Logically equivalent first-order sentence for each orbit

has_lock(n0) ∧ message(n0, n0) : 3 ∃N0. has_lock(N0) ∧ message(N0, N0)

has_lock(n0) ∧ message(n0, n1) : 6 ∃N0, N1. has_lock(N0) ∧ message(N0, N1) ∧ (N0 ̸= N1)

has_lock(n0) ∧ message(n1, n0) : 6 ∃N0, N1. has_lock(N0) ∧ message(N1, N0) ∧ (N0 ̸= N1)

has_lock(n0) ∧ message(n1, n1) : 6 ∃N0, N1. has_lock(N0) ∧ message(N1, N1) ∧ (N0 ̸= N1)

has_lock(n0) ∧ message(n1, n2) : 6 ∃N0, N1, N2. has_lock(N0) ∧ message(N1, N2)∧
(N0 ̸= N1) ∧ (N0 ̸= N2) ∧ (N1 ̸= N2)

Super orbit

∃N0, N1, N2. has_lock(N0) ∧ ¬message(N1, N2) Logically equivalent first-order
sentence for super orbit
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Update II: Quantification-Pattern Inference for Super Orbits

Perform quantification-pattern inference on super orbits:

Yields a smaller number of quantified invariants in Rmin.
10 out of 16 protocols results in a more compact Rmin.
E.g., the number of invariants in Rmin for simp-dec-lock reduces from 18 to 4.

Reaches cut-off at a smaller domain D∗.
8 out of 16 protocols achieves a smaller cut-off domain size.
E.g., the cut-off domain size for simp-dec-lock reduces from |node| = 4 to |node| = 3.

Luo, Goel, Sakallah Quantified Symmetric Minimization: An Update ScaVeri, ISoLA 2024 12 / 16



Update III: Syntactic Convergence Condition
Protocol toy_consensus_forall:

There are two minimum solutions for RD
min when the domain size for node is 3 or 4.

When the domain size is |node| = 5, |quorum| = 10, |value| = 3, Solution 1 is the only
minimum solution.

// Solution 0 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N,V0) | ~vote(N,V1) | (V0 = V1)
invariant [inv_14] forall V,N,Q. ~decided(V) | vote(N,V) | member(N,Q) | voting_quorum = Q

// Solution 1 for Rmin
invariant [inv_19] forall N. (exists V. vote(N,V) | ~voted(N))
invariant [inv_2] forall V,N. voted(N) | ~vote(N,V)
invariant [inv_3] forall V0,V1,N. ~vote(N0,V0) | ~vote(N0,V1) | (V0 = V1)
invariant [inv_12] forall V,N,Q. ~decided(V) | vote(N,V) | ~member(N,Q) | voting_quorum ~= Q

Let the syntactic convergence condition be the smallest domain D∗ such that (1) RD∗
min is

unique; (2) RD∗
min = RD∗+1

min .
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Overall Results on 19 Protocols
Protocol cut-off #inv #inv [FGS23] Time (s)

Consensus value=3 1 1 8.78
TCommit resource_manager=2 7 8 8.79
Ricart-Agrawala node=2 4 4 8.86
lock_server server=1,client=3 3 3 8.40
sharded_kv node=3,key=2,value=2 5 8 10.09
sharded_kv_no_lost_key node=3,key=2,value=2 6 9 10.71
simple-decentralized-lock node=3 4 18 9.00
firewall node=3 5 5 11.73
lockserv node=3 10 13 8.95
lockserv_automaton node=3 10 13 9.09
client_server_ae node=1,request=1,response=1 3 ? 8.80
TwoPhase resource_manager=1 16 ? 50.07
toy_consensus node=3,quorum=3,value=3 4 4 9.90
toy_consensus_epr node=3,quorum=3,value=3 5 6 10.20
naive_consensus node=3,quorum=3,value=3 3 3 10.17
simple-election acceptor=3,quorum=3,proposer=3 5 7 13.25
toy_consensus_forall node=5,quorum=10,value=3 4 6 172.03
consensus_epr node=3,quorum=3,value=2 10 16 755.09
quorum-leader-election-wo-maj node=5,nset=10 5 ? 390.93
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Future Work
Sym_DFS:

Issue: enumerating the symmetric orbit of a newly discovered state can be inefficient when the
symmetric group is large.
Future work: develop a hashing technique that hashes symmetric states to the same hash key.

Quantification-pattern inference:

For protocol two_phase_commit, there is no bounded quantification pattern to capture the
special literal distribution in prime orbits: #alive + #decide_abort = |node|
These prime orbits can be viewed as having an infinite cost and excluded from the minimum
solution. Future work: how to identify them?

Branch-and-bound search for minimum prime orbits cover

QSM uses a prime’s coverage as the branching heuristic, which is estimated using SAT queries.
Future work: improve coverage estimation with approximate or exact #SAT queries.

Totally-ordered sorts:

Extend QSM to support protocols with totally-ordered sorts by exploiting temporal
repetitiveness.
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Conclusions

QSM: Behaviors of unbounded distributed protocols can be inferred from analyzing finite
instances until a small cut-off domain sizes for protocol.

Updates to QSM:

We propose Sym_DFS, quantification-pattern inference for super orbits, and updated syntactic
convergence condition.
Experiments show that these improvements allow QSM to solve previously unsolved cases,
produce more compact quantified inductive invariants, and achieve syntactic convergence at
smaller domain sizes.
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